Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The La Prele Mammoth site (48CO1401), located in Converse County, Wyoming, contains a Clovis-age occupation associated with the remains of a subadult mammoth (Mammuthus columbi). In this paper, we present the geochronological and geoarchaeological context of the site. The La Prele Mammoth site is buried in an alluvial terrace of La Prele Creek, a tributary of the North Platte River, which acts as an important migration corridor through the Rocky Mountains. Archaeological remains, buried by a series of flood deposits, occur within or below a well-developed buried A horizon, referred to as the Mammoth Soil. Bioturbation of the site has resulted in vertical artifact movement, though peaks in artifact density are evident in vertical artifact distributions and likely represent the occupation surface. Radiocarbon dating of this occupation, including several new dates, suggests an age of 12,941 ± 56 calendar years ago (cal yr BP).more » « less
-
The development and application of luminescence dating and dosimetry techniques have grown exponentially in the last several decades. Luminescence methods provide age control for a broad range of geological and archaeological contexts and can characterize mineral and glass properties linked to geologic origin, Earth-surface processes, and past exposure to light, heat, and ionizing radiation. The applicable age range for luminescence methods spans the last 500,000 years or more, which covers the period of modern human evolution, and provides context for rates and magnitudes of geological processes, hazards, and climate change. Given the growth in applications and publications of luminescence data, there is a need for unified, community-driven guidance regarding the publication and interpretation of luminescence results. This paper presents a guide to the essential information necessary for publishing and archiving luminescence ages as well as supporting data that is transportable and expandable for different research objectives and publication outlets. We outline the information needed for the interpretation of luminescence data sets, including data associated with equivalent dose, dose rate, age models, and stratigraphic context. A brief review of the fundamentals of luminescence techniques and applications, including guidance on sample collection and insight into laboratory processing and analysis steps, is presented to provide context for publishing and data archiving.more » « less
-
null (Ed.)ABSTRACT The 72-km-long Teton fault in northwestern Wyoming is an ideal candidate for reconstructing the lateral extent of surface-rupturing earthquakes and testing models of normal-fault segmentation. To explore the history of earthquakes on the northern Teton fault, we hand-excavated two trenches at the Steamboat Mountain site, where the east-dipping Teton fault has vertically displaced west-sloping alluvial-fan surfaces. The trenches exposed glaciofluvial, alluvial-fan, and scarp-derived colluvial sediments and stratigraphic and structural evidence of two surface-rupturing earthquakes (SM1 and SM2). A Bayesian geochronologic model for the site includes three optically stimulated luminescence ages (∼12–17 ka) for the glaciofluvial units and 16 radiocarbon ages (∼1.2–8.6 ka) for the alluvial-fan and colluvial units and constrains SM1 and SM2 to 5.5±0.2 ka, 1σ (5.2–5.9 ka, 95%) and 9.7±0.9 ka, 1σ (8.5–11.5 ka, 95%), respectively. Structural, stratigraphic, and geomorphic relations yield vertical displacements for SM1 (2.0±0.6 m, 1σ) and SM2 (2.0±1.0 m, 1σ). The Steamboat Mountain paleoseismic chronology overlaps temporally with earthquakes interpreted from previous terrestrial and lacustrine paleoseismic data along the fault. Integrating these data, we infer that the youngest Teton fault rupture occurred at ∼5.3 ka, generated 1.7±1.0 m, 1σ of vertical displacement along 51–70 km of the fault, and had a moment magnitude (Mw) of ∼7.0–7.2. This rupture was apparently unimpeded by structural complexities along the Teton fault. The integrated chronology permits a previous full-length rupture at ∼10 ka and possible partial ruptures of the fault at ∼8–9 ka. To reconcile conflicting terrestrial and lacustrine paleoseismic data, we propose a hypothesis of alternating full- and partial-length ruptures of the Teton fault, including Mw∼6.5–7.2 earthquakes every ∼1.2 ky. Additional paleoseismic data for the northern and central sections of the fault would serve to test this bimodal rupture hypothesis.more » « less
-
Abstract Prominent scarps on Pinedale glacial surfaces along the eastern base of the Teton Range confirm latest Pleistocene to Holocene surface‐faulting earthquakes on the Teton fault, but the timing of these events is only broadly constrained by a single previous paleoseismic study. We excavated two trenches at the Leigh Lake site near the center of the Teton fault to address open questions about earthquake timing and rupture length. Structural and stratigraphic evidence indicates two surface‐faulting earthquakes at the site that postdate deglacial sediments dated by radiocarbon and optically stimulated luminescence to ∼10–11 ka. Earthquake LL2 occurred at ∼10.0 ka (9.7–10.4 ka; 95% confidence range) and LL1 at ∼5.9 ka (4.8–7.1 ka; 95%). LL2 predates an earthquake at ∼8 ka identified in the previous paleoseismic investigation at Granite Canyon. LL1 corresponds to the most recent Granite Canyon earthquake at ∼4.7–7.9 ka (95% confidence range). Our results are consistent with the previously documented long‐elapsed time since the most recent Teton fault rupture and expand the fault’s earthquake history into the early Holocene.more » « less
-
Abstract As sediment is transported through river corridors, it typically spends more time in storage than transport, and as a result, sediment delivery timescales are controlled by the duration of storage. Present understanding of storage timescales is largely derived from models or from field studies covering relatively short (≤102 year) time spans. Here we quantify the storage time distribution for a 17 km length of Powder River in Montana, USA by determining the age distribution of eroded sediment. Our approach integrates surveyed cross‐sections, analysis of historical aerial imagery, aerial LiDAR, geomorphic mapping, and age control provided by optically stimulated luminescence (OSL) and dendrochronology. Sediment eroded by Powder River from 1998 to 2013 ranges from a few years to ∼5,000 years in age; ages are exponentially distributed (r2 = 0.78; Anderson‐Darlingpvalue 0.003). Eroded sediment is derived from Powder River's meander belt (∼900 m wide), which is only 1.25 times its meander wavelength, a value reflecting valley confinement rather than free meandering. The mean storage time, 824 years (95% C.I. 610–1030 years), is similar to the time required to rework deposits of Powder River's meander belt based on an average meander migration rate of ∼1 m/yr, implying that storage time distributions of confined meandering rivers can be quantified from remotely sensed estimates of meander belt width and channel migration rates. Heavy‐tailed storage time distributions, frequently cited from physical and numerical modeling studies, may be restricted to unconfined meandering rivers.more » « less
An official website of the United States government
